
Learning TSP Requires
Rethinking Generalization

Chaitanya K. Joshi
Institute for Infocomm Research, A*STAR, Singapore

Joint work with Q. Cappart, L. M. Rousseau (Polytechnique Montreal),
T. Laurent (LMU), X. Bresson (NTU)

Travelling Salesperson Problem (TSP)

• Most extensively studied
NP-hard problem with
wide practical
applications.

• Engine of discovery for
advances in applied
mathematics...and deep
learning?

Summary

• Experimental review of SotA deep learning-based combinatorial
optimization solvers, with TSP as a benchmark.

• We can learn to solve trivially small instances close to optimality,
but extrapolating to larger and realistic problem instances is a
challenging and open problem.

• Deep Neural Networks can perfectly memorize very complex and
random training data.

• Inspired the community to study generalization and extrapolation
performance beyond training data.

Inspired by

Non-learnt Heuristics for TSP

•Cheap approximate
solutions.

•No/few theoretical
guarantees.

•Handcrafted.

Motivation

Furthest Insertion Heuristic (GIF)

Learnt Heuristics for TSP Novel NP-hard Problems

• Cheap approximate
solutions.

• No/few theoretical
guarantees.

•Handcrafted.
• Learnt from problem

instances via deep
neural networks.

Motivation

Furthest Insertion Heuristic (GIF)

Learnt Heuristics for TSP Novel NP-hard Problems
Motivation

Recent works showing this is possible for trivially small TSP instances…

Learnt Heuristics for TSP Novel NP-hard Problems
Motivation

6.01

8.35

5.99

8.31

5.75

8

5.73

7.94

5.7

7.87

5.7

7.76

0

1

2

3

4

5

6

7

8

9

50 Cities 100 Cities

A
ve

ra
ge

 T
o

u
r

Le
n

gt
h

Insertion Heuristic Khalil,Dai-etal-2017 Bello-etal-2017

Kool-etal-2018 Joshi-etal-2019 Concorde

Recent works showing this is possible for trivially small TSP instances…

How do we scale to
practical sizes beyond
few hundreds of nodes?

Research Question

Option 1: Just Scale SotA Approaches

We were unable to outperform the simple insertion heuristic when directly training
on 10+ Million TSP200 samples for 500 hours on university-scale hardware…

Optimality
Gap to

Concorde
Solver

Insertion Heuristic

Training on TSP200
from scratch

Option 2: Transfer Learning from small instances

Insertion Heuristic

Training on TSP200
from scratch

Transfer Learning
from TSP20-TSP50

Alternative: learn efficiently from trivially small TSPs + transfer the learnt policy to
larger graphs in a zero-shot fashion or via fast finetuning.

Which

Architectures,
Learning Paradigms and

Inductive Biases
enable strong

Zero-shot Generalization
to large TSP instances?

End-to-end Neural Combinatorial Optimization Pipeline

Step 1: A unified view of recent advances

Measuring generalization across TSP sizes
Step 2: A fair and controlled experimental setup

Experiment
Model 1
Model 2
Model 3
Model 4

(1) Compare
models fairly:
fixed #params,

epochs,
computation.

(2) Generalization
performance: test

TSPs beyond
training range.

(3) Insertion
heuristic baseline:

quantify ‘good’
generalization.

Our Findings

• Sparse k-NN graphs
> Fully connected
graphs.

• Maintain consistent
graph diameter
across TSP sizes.

• GNN-Sum,
Transformers (GAT):
most expressive.

• GNN-Max/Mean:
agnostic to node
degree => better
generalization.

• Autoregressive
decoding (AR):
sequential inductive
bias => strong
generalization!

• NAR: fast, but poor
extrapolation.

• Reinforcement
Learning (RL):
better under greedy
decoding.

• Supervised
Learning (SL): more
amenable to beam
search decoding.

What’s next?

Expressive + scale
invariant GNN

architectures for COPs.

More powerful classical search
techniques s.a. MC Tree Search,

post-hoc Local Search.

Novel transfer learning and
meta-learning techniques

for extrapolation.

Pre-print and Code are online

• ArXiv:
arxiv.org/abs/2006.
07054

• GitHub:
github.com/chaitjo/
learning-tsp

• Blog:
chaitjo.com/neural-
combinatorial-
optimization/

https://arxiv.org/abs/2006.07054
https://github.com/chaitjo/learning-tsp
http://www.chaitjo.com/neural-combinatorial-optimization/

Thank you!

