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Travelling Salesperson Problem (TSP)
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* Experimental review of SotA deep learning-based combinatorial
optimization solvers, with TSP as a benchmark.

 We can learn to solve trivially small instances close to optimality,
but extrapolating to larger and realistic problem instances is a
challenging and open problem.
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* Deep Neural Networks can perfectly memorize very complex and
random training data.

* Inspired the community to study generalization and extrapolation
performance beyond training data.



Motivation

Non-learnt Heuristics for TSP

* Cheap approximate
solutions.

* No/few theoretical
guarantees.

e Handcrafted.

Furthest Insertion Heuristic (GIF)




Motivation

Learnt Heuristics for R Novel NP-hard Problems

* Cheap approximate o
solutions.

* No/few theoretical
guarantees. o
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* Learnt from problem Y
instances via deep
neural networks. .

Furthest Insertion Heuristic (GIF)



Motivation

Learnt Heuristics for R Novel NP-hard Problems

Recent works showing this is possible for trivially small TSP instances...

Under review as a conference paper at ICLE 2017
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Motivation

Learnt Heuristics for R Novel NP-hard Problems

Recent works showing this is possible for trivially small TSP instances...
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Research Question

How do we scale to
oractical sizes beyond
few hundreds of nodes?



Option 1: Just Scale SotA Approaches
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We were unable to outperform the simple insertion heuristic when directly training
on 10+ Million TSP200 samples for 500 hours on university-scale hardware...



Option 2: Transfer Learning from small instances
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Alternative: learn efficiently from trivially small TSPs + transfer the learnt policy to
larger graphs in a zero-shot fashion or via fast finetuning.



Which
Architectures,

Learning Paradigms and

Inductive Biases
enable strong

Zero-shot Generalization
to large TSP instances?



Step 1: A unified view of recent advances

End-to-end Neural Combinatorial Optimization Pipeline
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Step 2: A fair and controlled experimental setup

Measuring generalization across TSP sizes
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Our Findings
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What’s next?
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